Contact Us
Home
Plastic Fabrication for the Pharmaceutical, Environmental and Industrial Sectors

Nylons (Polyamides) PA

The name "nylons" refers to the group of plastics known as polyamides. Nylons are typified by amide groups (CONH) and encompass a range of material types (e.g. Nylon 6,6; Nylon 6,12; Nylon 4,6; Nylon 6; Nylon 12 etc.), providing an extremely broad range of available properties. Nylon is used in the production of film and fibre, but is also available as a moulding compound.

Nylon is formed by two methods. Dual numbers arise from the first, a condensation reaction between diamines and dibasic acids produces a nylon salt. The first number of the nylon type refers to the number of carbon atoms in the diamine, the second number is the quantity in the acid (e.g. nylon 6,12 or nylon 6,6).

The second process involves opening up a monomer containing both amine and acid groups known as a lactam ring. The nylon identity is based on the number of atoms in the lactam monomer (e.g. nylon 6 or nylon 12 etc).

Nylons

The majority of nylons tend to be semi-crystalline and are generally very tough materials with good thermal and chemical resistance. The different types give a wide range of properties with specific gravity, melting point and moisture content tending to reduce as the nylon number increases.

Nylons tend to absorb moisture from their surroundings. This absorption continues until equilibrium is reached and can have a negative effect on dimensional stability. In general, the impact resistance and flexibility of nylon tends to increase with moisture content, while the strength and stiffness below the glass transition temperature (< 50-80 °C) decrease. The extent of moisture content is dependent on temperature, crystallinity and part thickness. Preconditioning can be adopted to prevent negative effects of moisture absorption during service.

Nylons tend to provide good resistance to most chemicals, however can be attacked by strong acids, alcohol's and alkalis.

Nylons can be used in high temperature environments. Heat stabilised systems allow sustained performance at temperatures up to 185 °C (for reinforced systems).